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Abstract Recent work has demonstrated the potential for globally optimizing nonconvex
quadratic programs using a reformulation based on the first order optimality conditions. We
show how this reformulation may be generalized to account for fixed cost variables. We then
extend some of the polyhedral work that has been done for bound constrained QPs to handle
such fixed cost variables. We show how to lift known classes of inequalities for the case with-
out fixed cost variables and propose several new classes. These inequalities are incorporated
in a branch-and-cut algorithm.
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1 Introduction

In this paper, we study a mixed integer nonlinear program of the form

max
1

2
xT Qx + cT x − f T δ,

subject to 0 ≤ x ≤ δ

x ∈ R
n, δ ∈ {0, 1}n. (FCQP)

We refer to this problem as the Fixed Cost Quadratic Program (FCQP). We assume that
Q ∈ R

n×n and that c, f ∈ R
n. Even with all the fixed cost variables, δ, fixed to one, this

problem remains NP-hard, see for instance [12]. Vandenbussche and Nemhauser [30,31]
studied a branch-and-cut approach to this problem with the fixed cost variables fixed to 1.
Their work is motivated by a classical reformulation by Giannessi and Tomasin [9] of a gen-
eral Quadratic Program (QP) to a linear program with linear complementarity constraints. In
this paper, we show how this reformulation can be extended to QPs with some type of fixed
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cost or capacity expansion variables. We apply this reformulation to FCQP and develop a
number of useful polyhedral results that are incorporated into a branch-and-cut algorithm.

A key observation is that we do not assume that the matrix Q be negative semidefinite,
and hence the difficulties with solving this problem stem not only from the fact that we have
binary integer variables, but also that the objective is a nonconcave maximization. The main
objective of this paper is to propose a general technique that can tackle both these diffi-
culties. In the case the objective is concave, one can take advantage of this structure using
the barrier-based branch-and-cut algorithm in CPLEX or various mixed-integer nonlinear
programming techniques such as those described in Ref. [10]. Hence, we will restrict our
attention to problems with indefinite Q.

Nonconcave QPs have many applications, including finding maximum cliques in graphs
[16] and in water resource management [25]. A significant body of work studying pure
0–1 quadratic problems and their applications exists, as is evidenced by Huang et al. and
Pardalos et al. [13,19,21–23] and the references therein. A variety of global optimization
techniques can be used to solve QPs without integer variables, see for instance [5,18,24,29]
and many others. They can also be solved with a general global optimization solver such as
BARON [27]. Another approach uses the reformulation proposed in Ref. [9], which states
that a bounded QP defined as

max
1

2
xT Qx + cT x subject to Ax ≤ b

is equivalent to

max 1
2

(
cT x + bT y

)

subject to Ax ≤ b y ≥ 0

yT (b − Ax) = 0

AT y − Qx = c.

The advantage of this reformulation is that it is linear, except for a finite number of com-
plementarity constraints. To take advantage of this, Giannessi and Tomasin [9] suggest a
finite, linear programming based branch-and-bound algorithm that recursively enforces the
complementarity constraints, yT (b − Ax) = 0. Alternatively, Balas [3] proposed a cutting
plane approach to solve this reformulation. Vandenbussche and Nemhauser [30,31] studied
the reformulation for the case where Ax ≤ b corresponds to 0 ≤ x ≤ e and developed valid
inequalities for the convex hull of complementary solutions. They incorporated these into a
branch-and-cut algorithm which was demonstrated to be computationally advantageous.

Except for general purpose global optimization solvers, the techniques we have mentioned
are not designed to solve QPs that also include binary integer variables. Our goal with this
work is to develop a finite branch-and-cut algorithm for nonconcave QPs with fixed charge
variables, such as FCQP. The main results of this work include:

• A generalization of the above reformulation of QPs that allows for fixed charge variables
on the variables and constraints.

• The development of cutting planes to help tackle this reformulation using branch-and-cut.
More specifically, we obtain a polyhedral description of a subset of the constraints in
the reformulation. A particularly interesting aspect is the lifting of continuous variables
in inequalities valid for the case without fixed charge variables, to obtain facet-inducing
inequalities for the problem of interest (see e.g. proposition 12).

• Computational results presented in Sect. 8 that demonstrate the significant computational
advantages of using a branch-and-cut approach to solve the reformulation of FCQP.
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Constraints of the form x ≤ δ with δ ∈ {0, 1}n appear very often in the optimization
literature, often referred to as fixed charge constraints [20]. They are fundamental constraints
in standard linear integer programming models such as facility location and lot-sizing (see
for instance [1] and [4]). These types of constraints have received a great deal of attention in
the Integer Programming literature, and many different types of valid inequalities have been
developed to deal with these structures, see for instance [2,11,20]. We point out here that we
do not intend to improve upon this integer programming literature, rather this work attempts
to study how one can accommodate the binary variables when dealing with the nonconcave
objective.

The paper is organized as follows. In Sect. 2, we extend the reformulation of QP by
Giannessi and Tomasin [9] to account for the binary fixed cost variables. In Sect. 3, we define
a subset of the constraints of the reformulation that we will refer to as a one-row relaxa-
tion. This set is the main object of our investigation. In this section, we summarize the main
theoretical results that characterize the facial structure of this one-row relaxation. Sections
4–7 detail the proofs of these results. Section 8 describes some computational results obtained
from incorporating the polyhedral results into a branch-and-cut algorithm.

2 Reformulation

As mentioned above, Giannessi and Tomasin [9] showed that QPs, if bounded, can always
be reformulated as linear programs with linear complementarity constraints. We now show
that this reformulation can be generalized to a class of QPs with binary variables, of which
FCQP is a special case.

We formulate this generalized QP as

max
1

2
xT Qx + cT x − f T δ,

subject to Ax ≤ b + b̄ ◦ δ

δ ∈ {0, 1}m, (GenQP)

where ◦ represents the usual Hadamard product. Note that this formulation includes con-
straints such as x ≤ δ but also allows one to model issues such as capacity expansion. Note
also that if b̄i = 0, then we may eliminate δi from the formulation.

Theorem 1 If GenQP is bounded, then it is equivalent to

max
1

2
cT x + 1

2
bT y0 + 1

2
(b + b̄)T y1 − f T δ

subject to AT y0 + AT y1 − Qx = c Ax ≤ b + b̄ ◦ δ

(y0)T (b − Ax) = 0 (y1)T (b + b̄ − Ax) = 0

y0, y1 ≥ 0 δ ∈ {0, 1}m.

(1)
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Proof For any fixed δ ∈ {0, 1}n, we can use the result from Ref. [9] to reformulate the
resulting QP as

max
1

2
cT x + 1

2

(
b + b̄ ◦ δ

)T
y

subject to AT y − Qx = c

Ax ≤ b + b̄ ◦ δ y ≥ 0

yT (b + b̄ ◦ δ − Ax) = 0.

By introducing the variables y1 = δ ◦ y and y0 = (e − δ) ◦ y, we easily obtain a solution
to (1) with the same objective value. Hence, the optimal value of (1) is at least the optimal
value of GenQP.

Conversely, suppose we have an optimal solution (x, δ, y0, y1) to (1). Using the equality
AT y0 + AT y1 − Qx = c and the complementarity constraints, one can see that

1

2
cT x + 1

2
bT y0 + 1

2
(b + b̄)T y1 = 1

2
xT Qx + cT x.

Hence, the optimal value of GenQP is at least the optimal value (1). ��
Note that this formulation essentially introduces two multipliers for each constraint i, one

for each possible right hand side, bi or bi + b̄i . Applying Theorem 1 to FCQP, we obtain

max 1
2cT x + 1

2eT y1 − f T δ (2)

subject to y1 + y0 − Qx − z = c δ ∈ {0, 1}n (3)

y1, y0, z ≥ 0 0 ≤ x ≤ δ (4)

zT x = 0 (e − x)T y1 = 0 xT y0 = 0 (5)

Note that we did not need additional multipliers for the x ≥ 0 constraints since these have
no binary variables in the right hand side. Otherwise, by setting A = I , b = 0, and b̄ = e,
the formulation for FCQP follows trivially from the theorem.

We are interested in solving this reformulation to obtain a globally optimal solution to
FCQP. Our main tool for this will be LP-based branch-and-cut. That is, we intend to relax
the complementarity constraints given in (5) and the integer constraints δ ∈ {0, 1} to obtain
an LP relaxation. We will then use branching to enforce the relaxed constraints. However,
this basic approach is not very effective, mostly because of the weak bounds provided by the
LP relaxations. Hence, in the remainder of this paper, we develop several classes of valid
inequalities that can be separated efficiently. At the end of the paper, we will demonstrate
their effectiveness in some computational tests.

3 One-row relaxation

Note that the reformulation of FCQP implies that ziy
1
i = 0 and y1

i y0
i = 0 for all i ∈ 1, . . . , n.

Furthermore, given the structure of the problem, we may assume WLOG that ziy
0
i = 0. In

order to develop valid inequalities for the reformulation, we propose to study the polyhedral
structure of a subset of the constraints. This is a commonly used technique in the IP literature,
see for instance the use of knapsack inequalities by Crowder et al. [7], and has also been used
in the context of complementarity [8]. This approach was also used by Vandenbussche and
Nemhauser [30] to find valid inequalities for the reformulation of box-constrained QPs. In
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fact, the set we study is closely related to the relaxation they studied. In particular, for any
i ∈ N := {1, . . . , n}, define a one-row relaxation as the set

Ri =

⎧
⎪⎪⎨

⎪⎪⎩
(y0

i , y1
i , zi , x) ∈ R

n+3 |
y0
i + y1

i − zi − ∑
j∈N qij xj = ci

y1
i (1 − xi) = 0 zixi = 0
y0
i xi = 0 y0

i zi = 0
y0
i , y1

i , zi ≥ 0 0 ≤ x ≤ e

⎫
⎪⎪⎬

⎪⎪⎭
.

We also define the convex hull of this set as PRi = conv(Ri). Note that the set Ri |y0
i =0 :=

{(y0
i , y1

i , zi , x) ∈ Ri : y0
i = 0} is the one-row relaxation studied by Vandenbussche and

Nemhauser [30].
It is not difficult to see that the complementarity constraints imply that Ri is bounded,

and hence PRi is a polytope. Knowing this, we can compute upper bounds for y0
i , y1

i , and
zi . Define

• ȳ0
i = ci + ∑

j∈N+
i

qij ,

• ȳ1
i = ci + qii + ∑

j∈N+
i

qij , and

• z̄i = −ci − ∑
j∈N−

i
qij ,

where N+
i = {j ∈ N \ i : qij ≥ 0} and N−

i = {j ∈ N \ i : qij < 0}. It is easy to see that if
y0
i > 0, then y0

i < ȳ0
i , with similar conclusions for y1

i and zi . To develop the results in this
paper, we will use

Assumption 1 ȳ0
i , ȳ1

i , z̄i > 0 as this is the most complex and significant case. WLOG, we
also assume that qij �= 0 ∀j ∈ N \ i, otherwise we may consider Ri to be a set of smaller
dimension.

In the remainder of this section, we will outline the polyhedral characterization of the set
PRi . We will state a number of results that define classes of nontrivial facets, i.e. inequalities
not induced by bounds on the variables. We will postpone the proofs for these results to later
sections.

For convenience, given a vector α ∈ R
n, we denote A0 = {j ∈ N\i : αj = 0},

A+ = {j ∈ N \ i : αj > 0}, and A− = {j ∈ N \ i : αj < 0}. Given a scalar a, we also
denote a+ = max(0, a).

To introduce the first class of inequalities, we choose some B ⊆ N \ i and define

V := ci +
∑

j∈N+
i \B

qij +
∑

j∈N−
i ∩B

qij

and

SEP B =

⎧
⎪⎪⎨

⎪⎪⎩
(α0, α) ∈ R

n+1 |
αi = V α0 αi, α

0 ≥ 0∑
j∈N+

i \B αj − ∑
j∈N−

i \B αj + αi = z̄i

αj = −qijα
0 ∀j ∈ B

αj ∈ {0, qij } ∀j ∈ N \ (B ∪ i)

⎫
⎪⎪⎬

⎪⎪⎭

Theorem 2 Suppose ∅ �= B ⊆ N \ i is such that V > 0, qii + V > 0, and suppose
(α0, α) ∈ SEP B with α0 > 0, then zi + α0y0

i + ∑
j αj xj ≤ ∑

j α+
j defines a facet of PRi .
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A different class of facets arises when B = ∅. Define

SEP z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α0, α) ∈ R
n+1 |

∑
j∈N+

i
αj − ∑

j∈N−
i

αj + αi = z̄i

0 ≤ αj ≤ qij ∀j ∈ N+
i

qij ≤ αj ≤ 0 ∀j ∈ N−
i

αi ≥ 0, α0 = αi

ȳ0
i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Theorem 3 Suppose (α0, α) is a vertex of SEP z and assume that A0 �= ∅, then zi +α0y0
i +∑

j αj xj ≤ ∑
j α+

j defines a facet of PRi .

To obtain the next class of facets, we define

SEP 1 :=

⎧
⎪⎪⎨

⎪⎪⎩
α ∈ R

n |

∑
j∈N−

i
αj − ∑

j∈N+
i

αj − αi = ȳ1
i

0 ≤ αj ≤ −qij ∀j ∈ N−
i−qij ≤ αj ≤ 0 ∀j ∈ N+
i

αi ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
.

Theorem 4 Suppose α is a vertex of SEP 1 and assume that either

• αj ∈ {0,−qij } ∀j ∈ N \ i, or
• qii < 0 and ci + ∑

j∈A+ qij + ∑
j∈N+

i ∩A0 qij > 0,

then y1
i + ∑

j αj xj ≤ ∑
j α+

j defines a facet of PRi .

The last class of facets we introduce are defined by the following result:

Theorem 5 Suppose that α is a vertex of

SEP 0 =

⎧
⎪⎪⎨

⎪⎪⎩
α ∈ R

n|

∑
j∈N−

i
αj − ∑

j∈N+
i

αj = ȳ0
i

0 ≤ αj ≤ −qij ∀j ∈ N−
i−qij ≤ αj ≤ 0 ∀j ∈ N+
i

αi = 0

⎫
⎪⎪⎬

⎪⎪⎭

and that ci + qii + ∑
j∈N+

i ∩A0 qij + ∑
j∈A+ qij > 0, then y0

i + ∑
j αj xj ≤ ∑

j α+
j defines

a facet of PRi .

The inequalities defined in Theorems 3 and 4 are closely related to the inequalities defined
by Vandenbussche and Nemhauser [30] for the set Ri |y0

i =0. In fact, as we will show, the fac-

ets of PRi described in these two theorems can be obtained by lifting the variable y0
i into

inequalities valid for Ri |y0
i =0. However, many of the facets of PRi defined by Theorem 3 are

obtained by lifting y0
i into a valid inequality that does not define a facet of Ri |y0

i =0. For those
inequalities we cannot use maximal lifting to show they define facets. We point out also that
the inequalities defined by Theorems 2 and 5 do not follow from such simple liftings. The
proofs of these results will be provided in Sects. 4–7. Furthermore, in these sections we will
also show that these theorems identify all the nontrivial facets of PRi , i.e. if an inequality
cannot be identified through one of these theorems, then it does not define a nontrivial facet.

Before proceeding with the proofs, we illustrate the results with an example.

Example 1 Suppose n = 3 and that we have q1· = [
3 −4 5

]
and c1 = 0. One can check

that ȳ1
1 = 8, z̄1 = 4, and ȳ0

1 = 5. Using PORTA [6], one can verify that the nontrivial facets
of PR1, organized by corresponding theorem, are
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• Theorem 2
z1 + 4y0

1 + 4x1 + 16x2 ≤ 20. Note that in this case, we have B = {2}.
• Theorem 3

z1 − 4x2 ≤ 0
z1 + 4x3 ≤ 4
z1 + 4

5y0
1 + 4x1 ≤ 4

• Theorem 4
y1

1 − 8x1 ≤ 0

y1
1 − 4x1 + 4x2 ≤ 4

• Theorem 5
y0

1 − 5x3 ≤ 0

4 Basic results

In this section, we develop some basic understanding of the polyhedral structure of PRi . We
begin by characterizing all valid inequalities for PRi . An analogous result for Ri |y0

i =0 can
be found in Ref. [30] and hence we omit the proof here.

Proposition 6 The inequality

α0y0
i + α1y1

i + αzzi +
∑

j∈N

αjxj ≤ β

is valid for PRi if and only if ∃ λ1, λ2, λ3, λ4 satisfying
∑

j∈N

(−qij λ
1 + αj )

+ ≤ β + λ1ci, (6)

∑

j∈N\i
(qij λ

2 + αj )
+ + qiiλ

2 + αi ≤ β − λ2ci, (7)

∑

j∈N\i
(−qij λ

3 + αj )
+ ≤ β + λ3ci, (8)

∑

j∈N\i
(qij λ

4 + αj )
+ ≤ β − λ4ci, (9)

λ2 ≥ α1 λ3 ≥ αzλ4 ≥ α0. (10)

The following lemma is also a trivial extension of a result in [30].

Lemma 7 If

α0y0
i + α1y1

i + αzzi +
∑

j∈N

αjxj ≤ β

is a facet of PRi , then there exist λk , k = 1, 2, 3, 4 satisfying (6)–(10) such that λ2 = α1,
λ3 = αz, and λ4 = α0.

Note that we can always use the equality set of Ri to eliminate y1
i from any valid inequality.

Hence we may write a general inequality as

α0y0
i + αzzi +

∑

j∈N

αjxj ≤ β. (11)
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In order to prove the next result, it is useful to know the structure of the vertices of the
polytope PRi . Suppose we define LPRi as the LP relaxation of Ri , that is LPRi is the
polyhedron defined by all constraints of Ri except the complementarity constraints. LPRi

has only one defining equality and hence, for any vertex of LPRi , at most one variable will
not be at one of its bounds. This is very useful thanks to the following trivial lemma whose
proof we omit.

Lemma 8 Any vertex of PRi is also a vertex of LPRi .

From this lemma, we know that if we have a vertex of PRi such that y0
i > 0, then we

must have y1
i = 0, zi = 0, and xj ∈ {0, 1} ∀j ∈ N . Similar conclusions can be drawn if

y1
i > 0 or zi > 0. Recall that we define a nontrivial facet as a facet not induced by any of

the bound constraints.

Proposition 9 Given a nontrivial facet (11) of PRi , then αz ≥ 0. If αz = 0, then α0 > 0
and αi = 0.

Proof Since the inequality is a nontrivial facet, there exist distinct vertices of PRi , (0, ỹ1
i , 0,

x1) and (0, 0, z̃i , x
2), that satisfy (11) at equality and such that ỹ1

i > 0, z̃i > 0, and xk ∈
{0, 1}n for each k = 1, 2. Furthermore, because of complementarity, we have that x1

i = 1 and
x2
i = 0. For notational convenience, denote Xk = {j ∈ N \ i : xk

j = 1} for each k = 1, 2.
We first show that αz ≥ 0. Suppose αz < 0, rescaling (11) by |αz| and redefining the

coefficients, we obtain α0y0
i − zi + ∑

j∈N αjxj ≤ β. From the points on the facet, we have

αi +
∑

j∈X1

αj = β and − z̃i +
∑

j∈X2

αj = ci +
∑

j∈X2

(qij + αj ) = β,

which implies that αi = −z̃i + ∑
j∈X2\X1 αj − ∑

j∈X1\X2 αj .

Note that if we were to decrease x1
� for some � ∈ X1 by ε > 0 and chose ε small enough

so that y1
i = ỹ1

i − qi�ε ≥ 0, then we still have a point in Ri that must satisfy the inequality
and hence αi +∑

j∈X1\� αj +α�(1−ε) ≤ β. This implies that α� ≥ 0. Using this technique,
one can show that

αj ≥ 0 ∀j ∈ X1 αj ≤ 0 ∀j /∈ X1 αj ≥ −qij ∀j ∈ X2 αj ≤ −qij ∀j /∈ X2.

Using these inequalities, one can show that

−qii < ci +
∑

j∈X1

qij ≤ αi ≤ ci +
∑

j∈X2

qij = −z̃i < 0,

where the first inequality follows because ỹ1
i = ci + qii + ∑

j∈X1 qij > 0. Reorganizing,
we get that

0 <
−ci − ∑

j∈X1 qij

qii

< 1

By setting xi equal to this fraction and xj = 1 ∀j ∈ X1, we obtain a point in Ri that violates
(11) since αi < 0 and αi + ∑

j∈X1 αj = β. Because of this contradiction, we may conclude
that αz ≥ 0.

Now suppose that αz = 0. We may now conclude that
∑

j∈X2 αj = β, αj ≥ 0 ∀j ∈ X2,

and αj ≤ 0 ∀j /∈ X2. Furthermore, αi = ∑
j∈X2\X1 αj −∑

j∈X1\X2 αj implies that αi = 0,
as required.
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Now suppose that in this case, we also have that α0 ≤ 0. Since
∑

j∈X1 αj = β, it is not

difficult to see then that the inequality α0y0
i + ∑

j∈N\i αj ≤ β is a linear combination of

the bound inequalities −xj ≤ 0 ∀j /∈ X1, xj ≤ 1 ∀j ∈ X1, and −y0
i ≤ 0. This contradicts

the assumption that (11) is a nontrivial facet, and hence we may also assume that α0 > 0 if
αz = 0. ��

Consider the point (0, ỹ1
i , 0, x1) defined in the previous proof. Using λ2 = 0 in (7), we

have

β =
∑

j∈X1

αj + αi ≤
∑

j∈N\i
α+

j + αi ≤ β.

This implies (7) is tight if the given inequality is a nontrivial facet. Similar arguments can
be used to show that (8) and (9) are tight. We will take advantage of this fact throughout
the next few sections, where we divide facet-defining inequalities into different categories,
depending on the sign of αz and αi .

5 Inequalities with αz > 0 and αi ≥ 0

In this section, we study the facets of PRi of the form α0y0
i + αzzi + ∑

j∈N αjxj ≤ β with
the property that αz > 0 and αi ≥ 0. Hence, we can rescale an arbitrary inequality to read

zi + α0y0
i +

∑

j∈N

αjxj ≤ β. (12)

In this case, we can substitute λ2 = 0 into (7), λ3 = 1 into (8), and λ4 = α0 into (9).
Note that, since αi ≥ 0, we may also set λ1 = 0 in which case (6) becomes equivalent to (7).
Hence, the conditions necessary for the validity of (12) are

∑

j∈N\i
α+

j + αi = β, (13)

−ci +
∑

j∈N\i
(−qij + αj )

+ = β, (14)

ciα
0 +

∑

j∈N\i
(qij α

0 + αj )
+ = β. (15)

Lemma 10 If (12) is a nontrivial facet and αi ≥ 0, then α0 ≥ 0, αj ≤ qij ∀j ∈ N+
i ,

αj ≥ qij ∀j ∈ N−
i , αj ≥ −qijα

0 ∀j ∈ N+
i , and αj ≤ −qijα

0 ∀j ∈ N−
i .

Proof Suppose we have a facet with α0 < 0. From (13) and since αi ≥ 0, it is easy to see
that the same inequality with α0 = 0 is also valid, a contradiction. Hence, we know that
α0 ≥ 0.

Now suppose that αj > qij for some j ∈ N+
i . Since α0 ≥ 0, that means the j th term

contributes to the left hand side of all equalities (13)–(15). Hence, we can decrease αj and
β by a sufficiently small ε > 0 and obtain another valid inequality. However, the original
inequality is a now a linear combination of the new one and the bound xj ≤ 1, which implies
the original cannot be a facet. A similar argument shows that αj ≥ qij ∀j ∈ N−

i .
Suppose that αj +qijα

0 < 0 for some j ∈ N+
i . Since this also implies that αj < 0, index

j does not contribute to the left hand sides of any of the inequalities (13)–(15). Hence, we
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may increase αj by a sufficiently small amount and remain valid, a contradiction. We omit
the proof for the case j ∈ N−

i . ��
Given a nontrivial facet (12) with αi ≥ 0, suppose we denote B+ = {j ∈ N+

i : αj < 0},
B− = {j ∈ N−

i : αj > 0}, and B = B+ ∪ B−. Using Lemma 10 and eliminating
β := αi + ∑

j∈N\i α+
j = αi + ∑

j∈N+
i \B αj + ∑

j∈B− αj from (13)–(15) to get

∑

j∈N+
i \B

αj −
∑

j∈N−
i \B

αj + αi = z̄i . (16)

ȳ0
i α0 +

∑

j∈B+
αj −

∑

j∈B−
αj − αi = 0 (17)

−qijα
0 ≤ αj ≤ 0 ∀j ∈ B+ 0 ≤ αj ≤ qij ∀j ∈ N+

i \ B+ (18)

0 ≤ αj ≤ −qijα
0 ∀j ∈ B− qij ≤ αj ≤ 0 ∀j ∈ N−

i \ B− (19)

α0, αi ≥ 0 (20)

For any choice of B, the system (16) – (20) defines a polyhedron in R
n+1. Clearly, any

facet-defining inequality of the form (12) with αi ≥ 0 must correspond to some vertex of
this polyhedron for some choice of B. If for some vertex, we have αj = 0 for some j ∈ B,
then without loss of generality we can remove that index from B. Hence, we may assume
that αj �= 0 ∀j ∈ B. At this point, it is convenient to consider two situations, B �= ∅ and
B = ∅. We begin with the former in the next section.

5.1 B �= ∅

We now prove a brief lemma that further characterizes the vertices of the polyhedron defined
by (16)–(20).

Lemma 11 Suppose (α0, α) is a vertex of (16)–(20), B �= ∅, and αj �= 0 ∀j ∈ B, then

• α0 > 0
• αj = −α0qij ∀j ∈ B

• αj ∈ {0, qij } ∀j ∈ N \ (B ∪ i)

• V := ci + ∑
j∈N+

i \B qij + ∑
j∈B− qij > 0

Proof Since B �= ∅, αj �= 0 ∀j ∈ B, and αi ≥ 0, (17) implies that α0 > 0.
To prove the second item, suppose that −qikα

0 < αk < 0 for some k ∈ B+. We now
show that we can construct two points satisfying (16)–(20) such that α lies on the line-seg-
ment between these two points. We will perturb (α0, α) by adding ε0 to α0 and adding εj

to αj ∀j ∈ B. All other coefficients will remain unchanged. To ensure that (17) remains
satisfied, we must have that

εk +
∑

j∈B+\k
εj −

∑

j∈B−
εj + ȳ0

i ε0 = 0. (21)

Furthermore, to ensure that the inequalities −α0qij ≤ αj ∀j ∈ B+\k and αj ≤ −α0qij ∀j ∈
B− continue to hold, we define εj = −qij ε

0 ∀j ∈ B− ∪ B+ \ k. Hence (21) requires that

εk =
(∑

j∈B+\k qij − ∑
j∈B− qij − ȳ0

i

)
ε0. Since αj �= 0 ∀j ∈ B, −qikα

0 < αk < 0, and

α0 > 0, we can choose ε0 to be a small enough positive number so that the perturbed (α0, α)

still satisfies (16)–(20). Similarly, we can make ε0 a negative number close enough to zero
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so that we obtain an opposite perturbation. Clearly, (α0, α) will be a convex combination of
these two perturbations and hence cannot be a vertex. A similar argument can be carried out
if instead ∃k ∈ B− such that 0 < αk < −qikα

0.
Now define V = ci + ∑

j∈N+
i \B qij + ∑

j∈B− qij . Since αj = −qijα
0 ∀j ∈ B, we

can rewrite (17) as αi = V α0. Clearly, we cannot have V < 0, otherwise we would violate
αi ≥ 0. Furthermore, if V = 0, then α0 can take any nonnegative value and hence an extreme
point solution would have α0 = 0. Hence, we may assume that V > 0. Consequently, we
can also assume that αi > 0 and hence it is not difficult to see that any extreme point solution
must have αj ∈ {0, qij } ∀j ∈ N \ (B ∪ i). ��

Note that in order for inequality (12) to be facet-defining in this case, we must also have
qii + V > 0, otherwise there is no point with y1

i > 0 that lies on the facet, contradicting the
fact it is nontrivial. We now show that the necessary conditions derived up to this point are
also sufficient. For convenience, we define

SEP B =

⎧
⎪⎪⎨

⎪⎪⎩
(α0, α) ∈ R

n+1 |
αi = V α0 αi, α

0 ≥ 0∑
j∈N+

i \B αj − ∑
j∈N−

i \B αj + αi = z̄i

αj = −qijα
0 ∀j ∈ B

αj ∈ {0, qij } ∀j ∈ N \ (B ∪ i)

⎫
⎪⎪⎬

⎪⎪⎭

We now restate and prove Theorem 2.

Theorem 2 Suppose ∅ �= B ⊆ N \ i is such that V > 0, qii + V > 0, and suppose
(α0, α) ∈ SEP B with α0 > 0, then (12) defines a facet of PRi .

Proof Define F̃ as an arbitrary face induced by

µ0y0
i + µ1y1

i + µzzi +
∑

j∈N

µx
j xj ≤ d (22)

and assume F ⊆ F̃ , where F is the face induced by (12), the inequality we want to prove is
a facet. We will show that (22) is a linear combination of (12) and the equality set defining
Ri . This will imply that (12) induces a facet.

For notational convenience, we will refer to points in Ri as (r, s, v,X) where r , s, v will
represent the values of y0

i , y1
i , and zi , respectively. X will refer to the index set j ∈ N such

that xj = 1, with all other x’s assumed to be 0.
It is not hard to check the following points are in Ri , and we will also show that they lie

on F :

v0 = (ȳ0
i , 0, 0, N+

i )

v1 = (0, V + qii , 0, (N+
i \ B) ∪ B− ∪ i)

v2 = (V , 0, 0, (N+
i \ B) ∪ B−)

vz = (0, 0, z̄i , N
−
i ).

To show that v0 is in F , observe that

ȳ0
i α0 = αi +

∑

j∈B−
αj −

∑

j∈B+
αj =

⎛

⎜
⎝αi +

∑

j∈B−
αj +

∑

j∈N+
i \B

αj

⎞

⎟
⎠ −

∑

j∈N+
i

αj

= β −
∑

j∈N+
i

αj ⇒ ȳ0
i α0 +

∑

j∈N+
i

αj = β.
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To show that v2 ∈ F , recall that α0V = αi and hence

α0V +
∑

j∈(N+
i \B)∪B−

αj = αi +
∑

j∈(N+
i \B)∪B−

αj = β.

The last equality also shows that v1 ∈ F . Lastly, we have

z̄i +
∑

j∈N−
i

αj =
⎛

⎜
⎝

∑

j∈N+
i \B

αj −
∑

j∈N−
i \B

αj + αi

⎞

⎟
⎠ +

∑

j∈N−
i

αj = β,

which implies that vz ∈ F . We now show a number of intermediate results:

µx
� = −qi�µ

0 ∀� ∈ B

Suppose � ∈ B−. We obtain another point by perturbing v0 slightly, setting x� = ε > 0 and
adding qi�ε to y0

i . By choosing ε small enough so that ȳ0
i +qi�ε ≥ 0 and since α� = −qi�α

0,
we have

α0 (
ȳ0
i + εqi�

) +
∑

j∈N+
i

αj + α�ε = β + (
α0εqi� + εα�

) = β,

which implies the perturbed point is also on F and hence F̃ . By substituting v0 and the
perturbed point into F̃ , we obtain µx

� = −qi�µ
0.

Similarly, if � ∈ B+, we can subtract ε > 0 from x� to create a perturbed point that leads
to the same conclusion.
µx

� = −qi�µ
1 ∀� ∈ A0 := {j ∈ N \ i : αj = 0}

Suppose � ∈ N+
i ∩ A0. We perturb v1 by subtracting ε from x� and adjusting y1

i appro-
priately. Note that if ε is small enough, then V + qii − εqi� > 0 and since � ∈ A0, the
perturbed point is also on F , and hence on F̃ . Substituting both into the inequality defining
F̃ and equating, we obtain the desired result. By increasing x� by ε if � ∈ N−

i ∩ A0, one
can derive the same result.
µx

� = qi�µ
z ∀� ∈ N \ (

B ∪ A0 ∪ i
)

Suppose that � ∈ N−
i \ (

B− ∪ A0
)
. We perturb vz by subtracting small enough ε > 0 from

x� such that zi = z̄i + εqi� ≥ 0. Since α� = qi�, it is easy to see this point is in F . Again,
we substitute both points into (22) to obtain the desired result. The other case is similar.

We now show that µx
i = (µ1 + µz)αi − µ1qii . Substituting v1 and vz into (22) and

eliminating common terms, we get

(V + qii)µ
1 + µx

i +
∑

j∈N+
i \B

µx
j = z̄iµ

z +
∑

j∈N−
i \B

µx
j .

Substituting in the previous results as necessary, we obtain

µ1

⎛

⎜
⎝ci +

∑

j∈N+
i \(B∪A0)

qij +
∑

j∈B−
qij

⎞

⎟
⎠ + µ1qii + µx

i +
∑

j∈N+
i \(B∪A0)

qijµ
z

= µz

⎛

⎜
⎝−ci −

∑

j∈B−
qij −

∑

j∈N−
i ∩A0

qij

⎞

⎟
⎠ −

∑

j∈N−
i ∩A0

qijµ
1.
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From (16), we have that

αi = −ci −
∑

j∈B−
qij −

∑

j∈N−
i ∩A0

qij −
∑

j∈N+
i \(B∪A0)

qij .

Hence, we may conclude that µx
i = −qiiµ

1 + (µ1 + µz)αi .
Next, we show that µ0 = µ1 + (µ1 + µz)α0. Using the fact that v2 and v1 are in F̃ , we

have

V µ0 +
∑

j∈N+
i \B

µx
j +

∑

j∈B−
µx

j = (V + qii)µ
1 +

∑

j∈N+
i \B

µx
j +

∑

j∈B−
µx

j + µx
i .

Hence,

V (µ0 − µ1) = µ1qii + µx
i = (µ1 + µz)αi = (µ1 + µz)α0V,

which, since V > 0, implies the desired result. From here, simple algebraic manipulations
show that

d = µ1ci + (µ1 + µz)

⎛

⎜
⎝αi +

∑

j∈N+
i \B

αj +
∑

j∈B−
αj

⎞

⎟
⎠ .

Combining all these results, we have shown that µ1 × (y0
i + y1

i − zi − ∑
j∈N qij = ci) +

(µ1 + µz)×(12) is equal to µ0y0
i + µ1y1

i + µzzi + ∑
j∈N µx

j xj ≤ d , as desired. ��
5.2 B = ∅

If we assume that B = ∅, then (16)–(20) simplifies to define the following polytope

SEP z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α0, α) ∈ R
n+1 |

∑
j∈N+

i
αj − ∑

j∈N−
i

αj + αi = z̄i

0 ≤ αj ≤ qij ∀j ∈ N+
i

qij ≤ αj ≤ 0 ∀j ∈ N−
i

αi ≥ 0, α0 = αi

ȳ0
i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

While any (α0, α) ∈ SEP z induces a valid inequality of the form (12), clearly only verti-
ces of SEP z can induce facets of PRi . In the remainder of this section, we will characterize
those vertices of SEP z that yield facets. We begin by identifying facets that result from
lifting facet-defining inequalities of Ri |y0

i =0 introduced by Vandenbussche and Nemhauser

[30]. Again, we define A+ = {j ∈ N \ i : αj > 0} and A0 = {j ∈ N \ i : αj = 0}.

Proposition 12 Suppose (α0, α) is a vertex of SEP z, then if

• αj ∈ {0, qij } ∀j ∈ N \ i, or
• qii < 0 and K := ci + qii + ∑

j∈A+ qij + ∑
j∈A0∩N−

i
qij < 0,

then (12) defines a facet of PRi .

Proof Vandenbussche and Nemhauser [30] showed that if either of the conditions of the
proposition hold, then zi + ∑

j∈N αjxj ≤ ∑
j∈N α+

j defines a facet of conv(Ri |y0
i =0). We
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will show that if we maximally lift y0
i into the inequality, its lifting coefficient is αi

ȳ0
i

, proving

the desired result. The lifting problem reads

θ = min

{∑
j (α

+
j − αjxj ) − zi

y0
i

| (y1
i , y0

i , zi , x) ∈ Ri, y
0
i > 0

}

.

Using the fact that y0
i > 0 implies that xi = 0, y1

i = 0, and zi = 0, the lifting problem may
be simplified to

θ = min

{
αi + ∑

j∈N+
i

αj (1 − xj ) − ∑
j∈N−

i
αj xj

y0
i

| (0, y0
i , 0, x) ∈ Ri, y

0
i > 0

}

.

It is easy to see that an optimal solution to this problem is to set xj = 1 ∀j ∈ N+
i and

xj = 0 ∀j ∈ N−
i ∪ i, since this minimizes the numerator and maximizes the denominator.

Hence, the lifting coefficient is θ = αi

ȳ0
i

. ��

Note that the argument used in the proof does not rely on the two conditions of the propo-
sition. However, if neither of the conditions are satisfied, then the inequality does not define a
facet of conv(Ri |y0

i =0) and hence we would not be able to guarantee that the lifted inequality
defines a facet. We now restate Theorem 3 which shows that lifting some of these nonfacets
does indeed yield facets of PRi .

Theorem 3 Suppose (α0, α) is a vertex of SEP z. If A0 �= ∅, then (12) defines a facet of
PRi .

Proof Because of Proposition 12, we may assume that ∃k ∈ N \ i such that αk /∈ {0, qik}.
Since (α0, α) defines a vertex of SEP z, this implies that αi = 0 since we cannot have two
or more variables not at their bounds at a vertex. Hence, we also have that α0 = 0.

Since
∑

j∈N+
i

αj − ∑
j∈N−

i
αj = z̄i , it is not difficult to show that

K := ci + qii +
∑

j∈A+
qij +

∑

j∈A0∩N−
i

qij = |qik − αk| + qii .

If K < 0, it must be the case that qii < 0 and hence the second sufficient condition of
Proposition 12 applies to show the inequality is a facet. Hence, we may now also assume that
K ≥ 0.

Define an arbitrary face F̃ as before and assume F ⊆ F̃ , where F is the face induced by
(12), the inequality we want to prove is a facet.

The rest of proof continues in much the same way as the proof of Theorem 2. We construct
various points in F and F̃ that help characterize (µ0, µ1, µz, µ, d) so that the inequality defin-
ing F̃ is nothing but a linear combination of (12) and the equality y0

i +y1
i −zi−∑

j qij xj = ci .

Two key claims that must be shown state that µx
k = −µ1qik + (µ1 +µz)αk and that µ0 = µ1

(recall that since αi = 0, α0 = 0 as well). We refer the reader to Ref. [15] for the details. ��
What remains in this section is to show that any inequalities that do not satisfy the sufficient

conditions of Proposition 12 or Theorem 3 cannot define a facet of PRi .

Proposition 13 Suppose (α0, α) is a vertex of SEP z. If A0 = ∅, then (12) does not define
a facet of PRi .
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Proof Observe that since A0 = ∅, we have that K = ȳ1
i > 0. Furthermore, suppose αj = qij

for all j ∈ N \ i, then since
∑

j |αj | = z̄j , we have ȳ0
i = 0, contradicting Assumption 1.

Hence the sufficient conditions of Proposition 12 do not apply. We begin by assuming that
k ∈ N+

i is such that 0 < αk < qik . We will show that (12) is not a facet by constructing two
valid inequalities such that (12) is a convex combination of the two.

Define α1 = α + (qik − αk)ek − (qik − αk)ei and β1 = β, where ej is the j th

unit vector. We can have (α1, β1) satisfy (7) with λ2 = 0 and (8) with λ3 = 1. Recall
that (qik − αk) + qii = K and hence −qii + α1

i ≤ 0, which means we can satisfy (6) with
λ1 = 1.

We now show that we can satisfy (9) with λ4 = α1
i

ȳ0
i

. Note that (qik − αk) + qii = K = ȳ1
i

implies −(qik − αk) = −ȳ0
i and hence λ4 = −1. This makes (9) equivalent to (8), which is

already satisfied. This implies that the inequality zi + α1
i

ȳ0
i

y0
i + ∑

j α1
j xj ≤ β1 is valid.

The second perturbation is defined by α2 = α − αkek + αkei and β2 = β. Clearly, (7)
and (8) are still satisfied. Since α2

i ≥ 0, we can satisfy (6) by setting λ1 = 0. Lastly, we want

to show that (9) holds for λ4 = αk

ȳ0
i

= α2
i

ȳ0
i

. We have

λ4ci +
∑

j∈N\i
(λ4qij + α1

j )
+ = λ4ci +

∑

j∈N+
i

(λ4qij + α1
j )

= λ4ȳ0
i +

∑

j∈N+
i \k

αj = αk +
∑

j∈N+
i \k

αj = β. (since αi = 0)

Hence, we have shown that zi + α2
i

ȳ0
i

y0
i + ∑

j α2
j xj ≤ β2 is valid. It is now easy to see that

αk

qik
× (α1, β1) + qik−αk

qik
× (α2, β2) = (α, β), which implies the original inequality is not a

facet.
If alternatively we have k ∈ N−

i with qik < αk < 0, then we define

α1 = α − |qik − αk|ek − |qik − αk|ei β1 = β − |qik − αk|, and
α2 = α + |αk|ek + |αk|ei β2 = β + |αk|.

From here, the proof proceeds much like the case for k ∈ N+
i and we omit it here. ��

6 Inequalities with αz > 0 and αi < 0

In the previous section, we have characterized those inequalities of the form (12) with αi ≥ 0
that define nontrivial facets. Our objective in this section is to show that for any nontrivial
facet (12) with αi < 0, we must have α0 = −1. From this fact, one can then easily show that
all such facets are equivalent to a set of facets of Ri |y0

i =0 characterized by Vandenbussche
and Nemhauser [30]. We begin with a simple lemma.

Lemma 14 Suppose (12) is a nontrivial facet with αi < 0 and let λ� for � = 1, . . . , 4 be
obtained from Proposition 6, then −1 ≤ −λ1 ≤ α0 < 0, 0 ≤ αj ≤ qij ∀j ∈ N+

i , and
qij ≤ αj ≤ 0 ∀j ∈ N−

i .

Proof From the results in Sect. 4, we know that we can set λ2 = 0 in (7), λ3 = 1 in (8), and
λ4 = α0 in (9). If α0 = −1, then (8) and (9) are equivalent. Hence, we may conclude that the

123



90 J Glob Optim (2008) 41:75–102

α0 ≥ −1. Since the inequality is a nontrivial facet, we know there exist points (ỹ0
i , 0, 0, X0)

and (0, ỹ1
i , 0, X1 ∪ i) in Ri with ỹ0

i , ỹ1
i > 0 that lie on the facet. Hence, we have that

∑

j∈X1

αj + αi = α0

⎛

⎝ci +
∑

j∈X0

qij

⎞

⎠ +
∑

j∈X0

αj .

It is easy to show that αj + α0qij ≥ 0 ∀j ∈ X0 and αj + α0qij ≤ 0 ∀j /∈ X0. Hence, we

may conclude that
(
ci + ∑

j∈X1 qij

)
α0 ≤ αi < 0. Now suppose that α0 > 0, then we may

conclude that 0 < −ci − ∑
j∈X1 qij < qii . This then implies that 0 <

−ci−∑
j∈X1 qij

qii
< 1.

By setting xi equal to this fraction and xj = 1 ∀j ∈ X1, we obtain a point that violates
(12) since αi < 0. Hence, we have shown that α0 ≤ 0. Furthermore, if α0 = 0, then since
αi < 0, (7) and (9) cannot be tight simultaneously. But this is a contradiction, since the points
(ỹ0

i , 0, 0, X0) and (0, ỹ1
i , 0, X1 ∪ i) show that these two inequalities must be tight.

Note that if λ1 > 1(< 0), then we may increase the coefficient of zi(y
1
i ) and maintain

validity. Hence, we have 0 ≤ λ1 ≤ 1. Furthermore, if λ1 = 0, then (6) would contradict (7)
since αi < 0.

Now suppose that αj < 0 for some j ∈ N+
i . Since λ1 ≥ 0 and α0 < 0, we know that index

j does not contribute to the left hand sides of (6)–(9). Hence, we can increase αj without
violating validity, a contradiction. If αj > qij for some j ∈ N+

i , then we can decrease αj

and β and maintain validity. A similar argument shows qij ≤ αj ≤ 0 ∀j ∈ N−
i .

Finally, to show that α0 ≥ −λ1, note that if this were not the case, then we could use −λ1

as the coefficient of y0
i and still have a valid inequality, a contradiction. ��

We intend to show that if the inequality is to be a nontrivial facet, then we must have
α0 = −1. We accomplish this with lemmas 16–18 that each handle a different case cor-
responding to the sign of qiiα

0 + αi . The proofs of these lemmas rely on the creation of
two valid inequalities such that the original inequality is a convex combination of these
two. The following lemma shows some sufficient conditions to obtain the required two valid
inequalities.

Lemma 15 Suppose zi + α0y0
i + ∑

j αj xj ≤ β is a valid inequality for PRi and define

α1 = α + ∑
j εj ej and β1 = ∑

j∈N−
i

εj . Suppose that 0 ≤ α1
j ≤ qij ∀j ∈ N+

i , qij ≤ α1
j

≤ 0 ∀j ∈ N−
i , and that

εi +
∑

j∈N+
i

εj =
∑

j∈N−
i

εj ,

then

• α1
i ≥ 0 implies that zi + ∑

j α1
j xj ≤ β1 is valid,

• −qii + α1
i ≤ 0 implies that zi − y0

i + ∑
j α1

j xj ≤ β1 is valid.

Proof This lemma is a simple generalization of Proposition 11 found in [30]. ��
For notational convenience, we denote F = {j ∈ N \ i : αj /∈ {0, qij }}, F+ = F ∩ N+

i ,
and F− = F ∩ N−

i .

Lemma 16 Suppose (12) is a valid inequality withαi < 0,−1 < α0 < 0, andqiiα
0+αi < 0,

then the inequality cannot be a facet of PRi .
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Proof Note that in this case, we may set λ1 = −α0 in order for (6) to hold. Now suppose
that qikα

0 + αk < 0 for some k ∈ F+. Given that λ2 = 0, λ3 = 1 and λ4 = α0, one can see
that there exists ε > 0 small enough so we may define α̃ = α − εei + εek and ensure that α̃

satisfies (6)–(9). Hence the inequality zi + α0y0
i + ∑

j α̃j xj ≤ β is valid. The opposite per-
turbation clearly also defines a valid inequality, which shows the original inequality cannot
be a facet. Hence, we may assume that qijα

0 + αj ≥ 0 ∀j ∈ F+.
Now suppose that qikα

0+αk > 0 for some k ∈ F−. Then we can define α̃ = α+εek +εei

and β̃ = β + ε for a small enough ε > 0 so that (α̃, β̃) satisfy (6)–(9). Hence, the inequality
zi + α0y0

i + ∑
j α̃j xj ≤ β̃ is valid. Again the opposite perturbation also yields a valid

inequality. Hence, qijα
0 + αj ≤ 0 ∀j ∈ F−.

Furthermore, a similar argument shows that we cannot have k1, k2 ∈ F+ such that qik�
α0+

α� > 0 for � = 1, 2. Analogously, we cannot have k1, k2 ∈ F− such that qik�
α0 + α� < 0

for � = 1, 2. Lastly, one can also show that we cannot have some k1 ∈ F+ such that
qik1α

0 + αk1 > 0 and some k2 ∈ F− such that qik2α
0 + αk2 < 0.

This leaves us with three possible cases to consider:

Case 1 qijα
0 + αj = 0 ∀j ∈ F

Case 2 qikα
0 + αk > 0 for some k ∈ F+ and qijα

0 + αj = 0 ∀j ∈ F \ k

Case 3 qikα
0 + αk < 0 for some k ∈ F− and qijα

0 + αj = 0 ∀j ∈ F \ k

For the sake of brevity, we only prove this for case 2, as the other cases are very similar.
To prove the result for this case, we will create two valid inequalities such that the original

is a convex combination of these two. To ensure their validity, we will define the two new
inequalities so that they satisfy the necessary conditions defined by Lemma 15. To define the
first inequality, we set

α1 = α − ekεk −
∑

j∈F+\k
ejαj − eiαi −

∑

j∈F−
ejαj

and

β1 = β −
∑

j∈F−
αj .

In order to ensure that (α1, β1) satisfies the conditions set forth in Lemma 15, we need
that −αi − ∑

j∈F+\k αj − εk = −∑
j∈F− αj , which uniquely defines εk . To show that

0 ≤ α1
k ≤ qik , we must perform some calculations.

After defining A+
q = {j ∈ N+

i : αj = qij } and A−
0 = {j ∈ N−

i : αj = 0} and substituting
appropriate values for λ1, λ2, and λ3, we may rewrite (6)–(8) as

α0ci +
∑

j∈A−
0

α0qij +
∑

j∈A+
q

(α0 + 1)qij + (α0qik + αk) = β, (23)

αi +
∑

j∈A+
q

qij +
∑

j∈F+
αj = β, (24)

−ci +
∑

j∈A−
0

(−qij ) +
∑

j∈F−
(αj − qij ) = β. (25)
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Combining equalities (23), (24), and (25) using multipliers −1, 1+α0, and −α0, respectively
and using the fact that αj = −α0qij ∀j ∈ F−, we get

−(α0qik + αk) + (1 + α0)

⎛

⎝αk + αi +
∑

j∈F+\k
αj −

∑

j∈F−
αj

⎞

⎠

= −α0(qik − αk) + (1 + α0)

⎛

⎝αi +
∑

j∈F+\k
αj −

∑

j∈F−
αj

⎞

⎠ = 0. (26)

Note that the second part of (26) states that −α0(qik − αk) + (1 + α0)(−εk) = 0. Since
qik − αk > 0, −α0 > 0, and 1 + α0 > 0, we have that εk > 0. Furthermore, since
α0qik +αk > 0, the first part of (26) shows that αk −εk > 0. Hence the conditions of Lemma
15 are satisfied and we may conclude that the inequality zi + ∑

j α1
j xj ≤ β1 is valid since

α1
i = 0.

To generate the second inequality, we define

α2 = α + ek(qik − αk) +
∑

j∈F+\k
ej (qij − αj ) − eiεi −

∑

j∈F−
ej (αj − qij )

and

β2 = β −
∑

j∈F−
(αj − qij ).

From Lemma 15, we require that −εi + ∑
j∈F+(qij − αj ) = −∑

j∈F−(αj − qij ). By

applying αj = −α0qij ∀j ∈ F \ k, we may rewrite (26) as

− α0

⎛

⎝(qik − αk) +
∑

j∈F+\k
(qij − αj ) +

∑

j∈F−
(αj − qij )

⎞

⎠ + (1 + α0)αi = 0. (27)

This equation can also be written as αi +α0(αi − εi) = 0. Adding and subtracting qiiα
0, we

obtain (αi +qiiα
0)+α0(αi −εi −qii). Since we have assumed that αi +qiiα

0 < 0, we have
that αi − εi < qii . Hence, Lemma 15 implies that the inequality zi − y0

i + ∑
j α2

j xj ≤ β2

is valid. From (26), (27), and αj = −α0qij ∀j ∈ F \ k, we have

−α0
(

α2

β2

)
+ (1 + α0)

(
α1

β1

)
=

(
α

β

)
,

from which we can conclude that the original inequality is a convex combination of the two
generated inequalities. ��
Lemma 17 Suppose (12) is a valid inequality withαi < 0,−1 < α0 < 0, andqiiα

0+αi = 0,
then the inequality cannot be a facet of PRi .

Proof Again, we may assume that λ1 = −α0. Using perturbation arguments as in the previ-
ous lemma, we can show that we cannot have

• k1, k2 ∈ F+(F−) such that α0qik�
+ αk�

> 0 for � = 1, 2,
• k1, k2 ∈ F+(F−) such that α0qik�

+ αk�
< 0 for � = 1, 2,

• k1 ∈ F+, k2 ∈ F− such that α0qik1 + αk1 > 0 and α0qik2 + αk2 < 0 or viceversa.
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This leaves us with a limited set of possible situations:

(a) If ∃ k1 ∈ F+ such that α0qik1 + αk1 > 0, then there is at most one index k2 ∈ F

such that α0qik2 + αk2 �= 0. Either k2 ∈ F+ with α0qik2 + αk2 < 0 or k2 ∈ F− with
α0qik2 + αk2 > 0.

(b) If ∃ k1 ∈ F− such that α0qik1 + αk1 < 0, then there is at most one index k2 ∈ F

such that α0qik2 + αk2 �= 0. Either k2 ∈ F+ with α0qik2 + αk2 < 0 or k2 ∈ F− with
α0qik2 + αk2 > 0.

For each of the possible resulting cases, one can show that two valid inequalities exist such
that (12) is a convex combination of these two. These inequalities are different for each case
but can be derived the same way as was done in the proof of Lemma 16 and so we omit the
details here. We refer the reader to Ref. [15] for further details. ��
Lemma 18 Suppose (12) is a valid inequality withαi < 0,−1 < α0 < 0, andqiiα

0+αi > 0,
then the inequality cannot be a facet of PRi .

Proof In a certain sense, this is the most difficult case as we cannot assume that λ1 = −α0.
Note that if it were, (6) would contradict the fact that (9) is tight with λ4 = α0. To proceed,
we require some notation. Define

f (λ) = −ciλ +
∑

j∈N

(−qij λ + αj )
+

Note that (6) is equivalent to f (λ1) ≤ β. We break this proof into two cases:

Case 1 ∃λ1 ∈ (0, 1) such that f (λ1) < β

In this case, we can use the fact that qiiα
0 +αi > 0 in a simple perturbation argument

as before to show that

qijα
0 + αj ≥ 0 ∀j ∈ F+ and qijα

0 + αj ≤ 0 ∀j ∈ F−.

Using this, we may write (7)–(9) as

αi +
∑

j∈A+
q

qij +
∑

j∈F+
αj = β, (28)

−ci +
∑

j∈A−
0

(−qij ) +
∑

j∈F−
(αj − qij ) = β, (29)

α0ci +
∑

j∈A−
0

α0qij +
∑

j∈A+
q

(α0 + 1)qij +
∑

j∈F+
(α0qij + αj ) = β. (30)

Combining (28) and (29), we obtain:

αi =
⎛

⎜
⎝−ci −

∑

j∈A−
0

qij −
∑

j∈F−
qij −

∑

j∈A+
q

qij

⎞

⎟
⎠ −

∑

j∈F+
αj +

∑

j∈F−
αj . (31)

By summing (30) + α0× (29) − (1 + α0)× (28), we obtain

− (α0 + 1)αi + α0

⎛

⎝
∑

j∈F+
(qij − αj ) +

∑

j∈F−
(αj − qij )

⎞

⎠ = 0. (32)
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Fig. 1 Example of f (λ)

Denote

εi =
∑

j∈F+
(qij − αj ) +

∑

j∈F−
(αj − qij ) > 0.

Rewriting (32), we get (α0 + 1)αi − α0εi = 0. Adding and subtracting α0qii , we
obtain α0(−qii + αi − εi) + (α0qii + αi) = 0. By assumption, the second term is
positive, and since α0 < 0, this implies that −qii + αi − εi > 0.
From (31), we have that

αi − εi = −ci −
∑

j∈A−
0

qij −
∑

j∈F+
qij −

∑

j∈A+
q

qij < 0

Since −qii + αi − εi > 0, then we get that

0 <
−ci − ∑

j∈A−
0

qij − ∑
j∈A+

q
qij − ∑

j∈F+ qij

qii

< 1,

By setting xi equal to this last quantity and setting xj = 1 ∀j ∈ A−
0 ∪ A+

q ∪ F+, we
get a feasible solution of PRi that violates (12) since αi < 0.

Case 2 minλ∈[0,1] f (λ) = β

It is not difficult to see that f (λ) is a convex piece-wise linear function, where the
breakpoints occur when −λqij +αj changes sign for some j ∈ F ∪ i. We will denote
a point at which the minimum is attained as λ∗. Figure 1 depicts an example of one
such f (λ).
Note that we may assume that λ∗ is a breakpoint of f (·). Furthermore, we must
have that λ∗ > −α0. Since qiiα

0 + αi > 0 implies that qii < 0, we may also
conclude that −qiiλ

∗ + αi > 0. Choose some ε > 0 small enough so that there are
no breakpoints of f between λ∗ − ε and ε. Since λ∗ is a minimizer of f (·), we must
have that the slope of f at λ∗ − ε must be nonpositive, i.e., f ′(λ∗ − ε) ≤ 0. Define
Xε = {j ∈ F : −qij (λ

∗ − ε) + αj > 0}. It is easy to see that

f ′(λ∗ − ε) = −ci − qii −
∑

j∈A−
0

qij −
∑

j∈A+
q

qij −
∑

j∈Xε

qij ≤ 0

By setting y1
i = −f ′(λ∗ − ε) and xj = 1 ∀j ∈ A−

0 ∪A+
q ∪Xε ∪ i, we have feasible

a point in PRi . This point must satisfy (12) and hence we have

αi +
∑

j∈A+
q

qij +
∑

j∈Xε

αj ≤ β (33)
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Furthermore, f (λ∗) = β implies that

− λ∗ci − λ∗qii + αi −
∑

j∈A−
0

λ∗qij +
∑

j∈A+
q

(1 − λ∗)qij +
∑

j∈Xε

(αj − λ∗qij ) = β

(34)

Subtracting (34) from (33), we find that −λ∗f ′(λ∗ − ε) ≤ 0, which implies that
f ′(λ∗ − ε) = 0. This means that the breakpoint to the left of λ∗, say λ̄, also satisfies
f (λ̄) = β. If −λ̄qii + αi > 0, we can repeat the argument and move left again.
However, we have that −λqii + αi > 0 ∀λ ≥ −α0, which implies that the slope
of each line segment of f between −α0 and λ∗ is zero. Therefore, f (−α0) = β, a
contradiction. ��

Lemmas 16–18 show that if αi < 0, then we may assume that if (12) defines a nontrivial
facet, it is of the form

zi − y0
i +

∑

j∈N

αjxj ≤ β. (35)

In the remainder of this section, we would like to characterize these inequalities to be
exactly a class of inequalities defined by Vandenbussche and Nemhauser [30] for Ri |y0

i =0.
We begin by showing

Proposition 19 If inequality (35) is a nontrivial facet with αi < 0, then we must have that
−qii + αi ≤ 0.

Proof A similar result is shown by Vandenbussche and Nemhauser [30] for inequalities
zi + ∑

j αj xj ≤ β valid for the set Ri |y0
i =0. The authors assume that qii < αi < 0 and

show, for an exhaustive list of cases, that zi + ∑
j αj xj ≤ β is a convex combination of

two inequalities zi + ∑
j α�

j xj ≤ β� for � = 1, 2. While the choice of these two inequalities

varies case by case, they all satisfy
∑

j∈N\i (−qij +α�
j ) = β� + ci . Because of this, it is easy

to see that zi − y0
i + ∑

j α�
j xj ≤ β� is valid for Ri and hence the result follows. ��

Using the equality y1
i + y0

i − zi − ∑
j qij xj = ci and defining α̃j = αj − qij ∀j ∈ N

and β̃ = β + ci , we can rewrite inequality (35) as

yi +
∑

j∈N

αjxj ≤ β̃ (36)

such that αi ≤ 0, 0 ≤ αj ≤ −qij ∀j ∈ N−
i , and −qij ≤ αj ≤ 0 ∀j ∈ N+

i . Since the
inequality is a nontrivial facet, we can satisfy (7)–(9) by setting λ2 = 1 and λ3 = λ4 = 0. By
proposition 19, αi ≤ 0, and hence we can satisfy (6) by setting λ1 = 0. Hence, from these
four inequalities, we now have just two distinct ones:

ci + (qii + αi) +
∑

j∈N+
i

(qij + αj ) = β̃

∑

j∈N−
i

αj = β̃
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Substituting out β̃, we find that we must have

α ∈
⎧
⎨

⎩
α ∈ R

n|
∑

j∈N−
i

αj − ∑
j∈N+

i
αj − αi = ȳ1

i

0 ≤ αj ≤ −qij ∀j ∈ N−
i−qij ≤ αj ≤ 0 ∀j ∈ N+
i

⎫
⎬

⎭
:= SEP 1

Vandenbussche and Nemhauser [30] showed that if α is a vertex of SEP 1, then if either

(A) αj ∈ {0,−qij } ∀j ∈ N \ i, or
(B) αk /∈ {0,−qik} for some k ∈ N \ i, qii < 0, and

ci +
∑

j∈N−
i :αj >0

qij +
∑

j∈N+
i :αj =0

qij > 0, (37)

then (36) is a facet of Ri |y0
i =0.

They also showed that if either of these conditions are not met, then the inequality does
not induce a facet. Using a simple lifting argument, we show that if we maximally lift the
coefficient of y0

i for either of these cases, we get a coefficient of 0 and hence (36) is also
facet-defining for PRi in those cases. This will prove Theorem 4, which we restate here.

Theorem 4 Suppose α is a vertex of SEP 1 and suppose either (A) or (B) holds, then (36)
is a facet of PRi .

Proof By our previous observations, we know that such an inequality defines a facet of
Ri |y0

i =0. We now show that maximally lifting y0
i yields a coefficient of 0. For convenience,

define A+ = {j ∈ N−
i : αj > 0}, A0 = {j ∈ N \i : αj = 0}, and A− = {j ∈ N+

i : αj < 0}.
The lifting problem reads

α0 = min

{∑
j∈N−

i
αj − ∑

j αj xj − y1
i

y0
i

| (y0
i , y1

i , zi , x) ∈ Ri, y
0
i > 0

}

= min

{∑
j∈N−

i
αj − ∑

j∈N\i αj xj

y0
i

| (y0
i , 0, 0, x) ∈ Ri, y

0
i > 0

}

= min

{∑
j∈A+ αj (1 − xj ) − ∑

j∈A− αjxj

y0
i

| (y0
i , 0, 0, x) ∈ Ri, y

0
i > 0

}

. (38)

It is easy to see that the numerator in (38) is nonnegative. Hence, any solution that makes the
numerator 0 and has y0

i > 0 will be optimal for (38). To do this, we must set xj = 1 ∀j ∈ A+
and xj = 0 ∀j ∈ A−. Note that we must also have xi = 0 since y0

i > 0. In order to make y0
i

as large as possible, we set xj = 0 ∀j ∈ N−
i ∩ A0 and xj = 1 ∀j ∈ N+

i ∩ A0. This implies
that we have y0

i = ci +∑
j∈A+ qij +∑

j∈N+
i ∩A0 qij . Note that if (B) holds, then y0

i > 0 and

hence the optimal value of the lifting problem is α0 = 0.
We now show that y0

i > 0 when (A) holds. We have that αj ∈ {0,−qij } ∀j ∈ N \ i.
Since α ∈ SEP 1, we have that

∑
j∈N |αj | = ȳ1

i , which in this case implies

−αi −
∑

j∈A+
qij +

∑

j∈A−
qij =

∑

j∈N+
i

qij + qii + ci .
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Rearranging, we get

y0
i = ci +

∑

j∈A+
qij +

∑

j∈N+
i ∩A0

qij = −(αi + qii).

However, observe that αi + qii < 0 since αi = αi − qii and we have assumed αi < 0.
We have now shown that the optimal value of the lifting problem is α0 = 0 when either

sufficient condition holds, and hence (36) is a facet of PRi under these circumstances. ��
What remains is to show that if neither of the sufficient conditions above hold, then

inequality (36) cannot define a facet.

Proposition 20 Suppose that α is a vertex of SEP 1 and assume that αk /∈ {0,−qik} for
some k ∈ N \ i. If either qii ≥ 0 or (37) does not hold, then (36) cannot define a facet.

Proof Much as in the proof of proposition 19, we observe that we can use proofs of equiv-
alent results for Ri |y0

i =0 (see propositions 15 and 19 in Ref. [30]). Again, those proofs find
two inequalities valid for Ri |y0

i =0 such that (36) is a convex combination of these two. It is
easy to see that in this case, these inequalities are also valid for PRi and hence the same
result holds here. ��

7 Inequalities with αz = 0

In this section, we characterize all nontrivial facets (11) of PRi that have αz = 0. From
Proposition 9, we know that α0 > 0 and αi = 0 in this case and hence such inequalities may
be written as

y0
i +

∑

j∈N\i
αj xj ≤ β. (39)

Proposition 21 Suppose that (39) is a nontrivial facet of PRi , then

• ∑
j∈N\i |αj | = ȳ0

i

• 0 ≤ αj ≤ −qij ∀j ∈ N−
i• −qij ≤ αj ≤ 0 ∀j ∈ N+
i• β = ∑

i∈N−
i

αj

Proof By setting λ1 = 0, λ2 = 0, and λ3 = 0 and since αi = 0, (6), (7), and (8) can be
written as

∑

j∈N\i
α+

j = β. (40)

By setting λ4 = 1, (9) becomes

ci +
∑

j∈N\i
(qij + αj )

+ = β. (41)

Suppose that αj > 0 for some j ∈ N+
i , then one can decrease both αj and β and (40) and

(41) would still be satisfied. But then the original inequality is a nonnegative combination of
this new inequality and the bound inequality xj ≤ 1. Hence, in any nontrivial facet, we must
have αj ≤ 0 ∀j ∈ N+

i . If αj < −qij for some j ∈ N+
i , then index j does not contribute
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to the left hand side of (40) and (41). Hence we can increase this coefficient and maintain
validity, which implies the inequality could not be a facet. From this we may conclude that
αj ≥ −qij ∀j ∈ N+

i . Similarly, one can show that 0 ≤ αj ≤ −qij ∀j ∈ N−
i . By equating

(40) and (41), the rest of the proposition follows. ��
Because of Proposition 21, we are led to define

SEP 0 =

⎧
⎪⎪⎨

⎪⎪⎩
α ∈ R

n|

∑
j∈N−

i
αj − ∑

j∈N+
i

αj = ȳ0
i

0 ≤ αj ≤ −qij ∀j ∈ N−
i−qij ≤ αj ≤ 0 ∀j ∈ N+
i

αi = 0

⎫
⎪⎪⎬

⎪⎪⎭

Clearly, any facet of the form (39) must be such that α is a vertex of SEP 0. Furthermore, in
order to have a point with y1

i > 0 that lies on the facet, we must have

K0 := ci + qii +
∑

j∈N+
i ∩A0

qij +
∑

j∈A+
qij > 0, (42)

where A0 = {j ∈ N \ i : αj = 0}, A+ = {j ∈ N \ i : αj > 0}. Theorem 5 states that the
above conditions are sufficient for (39) to define a facet of PRi , we repeat it here.

Theorem 5 Suppose that α is a vertex of SEP 0 and that (42) holds, then (39) is a facet of
PRi .

Proof The proof of this result requires the construction of a number of points that lie on the
face defined by (39). Since the proof proceeds in much the same way as that of Theorem 2,
we again refer the reader to Ref. [15] for details. ��

8 Computational results

To demonstrate the use of the facets described in the previous sections, we have implemented a
branch-and-cut algorithm using the MINTO framework [17]. Although intended for solving
mixed integer programs, this framework allows one to implement LP-based branch-and-
bound algorithms that branch on other entities (such as complementarity constraints) as well.
The framework requires an LP solver to solve the nodes of the branch-and-bound tree, for
this we used CPLEX 9.1 [14]. The runs were executed on a Linux PC with a 2.4 GHz Intel
Xeon processor and 1 Gb of RAM.

We briefly describe the cuts that were used and how they were separated. Recall that
the sets SEP 0, SEP z, and SEP 1 are all continuous knapsack sets, that is, they have one
equality constraint and otherwise contain only bound constraints. Consequently, optimizing
over them can be done very quickly with a sorting algorithm, see [31] for similar separation
problems. Note that by using these separation techniques, we may add inequalities that are
valid but do not define facets of PRi . Given the ease with which the separation can be carried
out, we add these inequalities nonetheless. We have not yet developed a way to choose B

appropriately to separate cuts that can be derived from SEP B . We leave the separation of
these inequalities to future work. Some initial computations indicated that using MINTO’s
separation routines for standard IP inequalities such as flow covers was not effective, so we
turned off all standard MINTO cut generation.

After some experimentation, we found that branching on violated integrality constraints
first, before branching on complementarity constraints yielded reasonably good results.
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Hence after solving an LP at a node, the algorithm checks to see if any binary variable
is fractional and, if so, branches on it. Otherwise it uses a maximum-violation strategy to
select a complementarity constraint on which to branch. For example, given an LP solution
(ỹ1, ỹ0, z̃, x̃), we compute argmaxi∈N {z̃i x̃i/z̄i} to find the maximally violated complemen-
tarity constraint zixi = 0. We carry out similar computations for the other complementarity
constraints and branch on the most violated constraint. For instance, if branching on the
constraint y0

i xi = 0, then the branching dichotomy is
(
y0
i = 0

) ∨(
xi = 0, y1

i = 0, zi = 0
)
.

Note that we include zi = 0 in the second branch since we can assume that y0
i zi = 0.

From a result by Rosenberg [26], it is easy to see that if qii ≥ 0 for some i ∈ N , then there
exists an optimal solution that has xi ∈ {0, 1}. Our branching rules reflect this by defining
the branching dichotomy for an index i with qii ≥ 0 as

(
xi = 0, y1

i = 0
) ∨(

xi = 1, y0
i = 0, zi = 0

)
.

Cuts are added at every node, using as many rounds as necessary to exhaust all violated
inequalities. Since these cuts are very easy to generate, we also deactivate rows very aggres-
sively, removing a cut from the active LP if the corresponding dual variable has been zero in
more than two consecutive LP solutions.

To initialize the LP relaxation, we include the following valid inequalities:

y1
i ≤ ȳ1

i xi , zi + z̄ixi ≤ z̄i , y0
i + ȳ0

i xi ≤ ȳ0
i ∀i ∈ N

These inequalities follow immediately from complementarity and are included in the initial
LP and are not subject to the row deactivation scheme.

We also initialized the branch-and-bound algorithm with an initial feasible solution. We
obtained this solution by finding a locally optimal solution of the QP

max
1

2
xT Qx + (c − f )T x subject to 0 ≤ x ≤ e,

and using this x to construct a feasible solution (x, δ) to FCQP. We use MATLAB’s optimi-
zation toolbox to find a locally optimal solution. We only used this primal heuristic once, at
the root node of the search tree.

We randomly generated a set of 39 instances with different sizes and densities for the
matrix Q. The nonzero entries of Q and c are random integers in the range [−50, 50] while
the fixed costs f are random integers in the range [0, 50]. Instances are labeled as n− d − s,
where n is the size, d is the density, and s is the seed used to generate the instance. We solved
the instances with and without generating cuts. For the purposes of comparison, we also
solved these instances using BARON 7.5 [28] with a 0.001% relative optimality tolerance.
The default optimality tolerance in MINTO is 0.0001 %. All runs were given a 4000 second
time limit. Due to memory limitations, we limited the branch-and-bound runs to 1 million
nodes. The results are reported in Table 1. For those instances that did not terminate within
the time limit, we list the relative optimality gap as a percentage in the CPU column, marked
with a (�). Similarly, for instances that reached the node limit, we list the gap marked with a
(†). Note that CPU times were rounded to the nearest integer.

The results clearly indicate the strength of the inequalities and their ability to solve the
same instances in significantly less time compared to plain branch-and-bound or BARON.
While branch-and-cut finished all but four instances in the allotted time, branch-and-bound
did not prove optimality for 21 instances. BARON was not able to complete 23 of the 39
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Table 1 Computational results with baron, branch-and-bound (B&B), and branch-and-cut (B&C)

Name Objective value CPU (s) or Gap (%)

Baron B & B B & C Baron B & B B & C

20-080-1 550.50 550.50 550.50 2 0 0

20-080-2 198.50 198.50 198.50 5 0 0

20-080-3 489.56 489.56 489.56 5 1 0

20-090-1 445.50 445.50 445.50 33 3 1

20-090-2 201.00 201.00 201.00 41 2 1

20-090-3 246.50 246.50 246.50 12 1 1

20-100-1 479.50 479.50 479.50 112 3 1

20-100-2 309.50 309.50 309.50 62 6 1

20-100-3 403.00 403.00 403.00 98 4 1

30-060-1 606.00 606.00 606.00 3,173 286 8

30-060-2 269.50 269.50 269.50 2,864 24 4

30-060-3 829.00 829.00 829.00 55 3 1

30-070-1 766.50 766.50 766.50 � 18.39 38 8

30-070-2 431.78 431.78 431.78 � 40.98 220 19

30-070-3 885.00 885.00 885.00 478 � 4.65 4

30-080-1 897.00 886.50 897.00 � 19.17 � 4.88 8

30-080-2 319.00 319.00 319.00 � 49.62 80 13

30-080-3 1134.50 1134.50 1134.50 114 3 2

30-090-1 802.50 796.50 802.50 � 39.71 � 15.96 28

30-090-2 555.50 555.50 555.50 � 46.33 3,479 23

30-090-3 754.00 746.85 754.00 � 38.98 � 30.82 36

30-100-1 476.50 435.56 476.50 � 67.40 � 87.16 867

30-100-2 484.50 414.33 484.50 � 60.78 � 110.98 128

30-100-3 1193.00 1193.00 1193.00 � 33.16 � 18.74 38

40-060-1 898.50 860.45 898.50 � 48.81 † 19.25 423

40-060-2 611.50 611.50 611.50 � 47.66 606 73

40-060-3 1217.00 1217.00 1217.00 � 34.39 † 4.61 107

40-070-1 929.50 921.50 929.50 � 56.17 † 31.93 1,084

40-070-2 706.00 706.00 706.00 � 58.09 � 17.07 261

40-070-3 1436.50 1390.73 1436.50 � 40.74 † 13.82 257

40-080-1 1202.50 1201.50 1202.50 � 51.12 � 34.00 936

40-080-2 630.00 612.86 630.00 � 64.83 � 55.72 474

40-080-3 1116.50 1075.15 1116.50 � 53.42 � 48.30 964

40-090-1 1720.00 1708.00 1720.00 � 45.78 � 22.84 575

40-090-2 661.00 638.00 638.00 � 73.04 � 134.01 � 46.15

40-090-3 896.50 749.50 749.50 � 66.55 � 157.91 � 67.59

40-100-1 2091.00 2088.00 2091.00 � 44.24 † 21.67 1,261

40-100-2 1350.00 1350.00 1350.00 � 56.29 � 77.42 � 23.82

40-100-3 1345.50 1342.50 1342.50 � 58.87 � 63.19 � 20.95
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instances within the time limit. It is important to point out however that BARON is a general
purpose global optimization solver while our approach is clearly specialized to this prob-
lem type. Regardless, these results indicate the merit of studying particular structures within
mixed-integer nonlinear programming, as we have done here. In particular, one can see that
the development of appropriate polyhedral results can have a significant impact on the global
optimization of difficult nonlinear programming instances.

It remains to be seen how the results in this paper can be extended to handle general
constraints such as those in GenQP. Furthermore, the valid inequalities in this paper do
not account for the integer variables. Cutting planes that attempt to approximate both the
integrality and complementarity constraints are currently not available and require further
polyhedral study. We hope to develop these in future work.
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